Answer:
The heavier piece acquired 2800 J kinetic energy
Explanation:
From the principle of conservation of linear momentum:
0 = M₁v₁ - M₂v₂
M₁v₁ = M₂v₂
let the second piece be the heavier mass, then
M₁v₁ = (2M₁)v₂
v₁ = 2v₂ and v₂ = ¹/₂ v₁
From the principle of conservation of kinetic energy:
¹/₂ K.E₁ + ¹/₂ K.E₂ = 8400 J
¹/₂ M₁(v₁)² + ¹/₂ (2M₁)(¹/₂v₁)² = 8400
¹/₂ M₁(v₁)² + ¹/₄M₁(v₁)² = 8400
K.E₁ + ¹/₂K.E₁ = 8400
Now, we determine K.E₁ and note that K.E₂ = ¹/₂K.E₁
1.5 K.E₁ = 8400
K.E₁ = 8400/1.5
K.E₁ = 5600 J
K.E₂ = ¹/₂K.E₁ = 0.5*5600 J = 2800 J
Therefore, the heavier piece acquired 2800 J kinetic energy
Answer:
A super conductor is a perfect conductor that has zero resistance. It doesn't just have very low resistance and conducts electricity well, it has ZERO resistance and conducts electricity perfectly with no losses at all
The relationship between the number of visible spectral lines are identical for atoms .However they have unique wavelengths.
Option B
<u>
Explanation:</u>
A spectrum is a range of frequencies or a range of wavelengths. The photon energy of the emitted photon is equal to the difference between two states. For every atom there are quite many electron transitions and each has a energy difference.
This difference in wavelength causes spectrum .As each element emission spectrum is unique because each atom has different energy and causes uniqueness in the emission spectrum . Hence, due to the difference in energy it emits different wavelengths.
Answer:
density is Mg/µL
Explanation:
given data
density of nuclear = kg/m³
1 ml = 1 cm³
to find out
density of nuclear matter in Mg/µL
solution
we know here
1 Mg = 1000 kg
so
1 m³ is equal to cm³
and here 1 cm³ is equal to 1 mL
so we can say 1 mL is equal to 10³ µL
so by these we can convert density
density = kg/m³
density = kg/m³ × Mg/µL
density = Mg/µL