Student 1 would have a power 467 W and student 2 would have a power of 433 W. The correct option is the fourth option - Student 1 would have 467 W, and Student 2 would have 433 W of power.
From the question,
We are to calculate the power each student would have to climb the flight of stairs.
Power can be calculated using the formula
Where
P is Power
F is the force
d is the distance
and t is the time
NOTE: The weight of the students represent the force
F = 700 N
d = 4 m
t = 6 s
∴
P = 467 W
F = 650 N
d = 4 m
t = 6 s
∴
P = 433 W
Hence, Student 1 would have a power 467 W and student 2 would have a power of 433 W. The correct option is the fourth option - Student 1 would have 467 W, and Student 2 would have 433 W of power.
Learn more here: brainly.com/question/18801566
Answer:
Magnetic flux through the loop is 1.03 T m²
Explanation:
Given:
Magnetic field, B = 4.35 T
Radius of the circular loop, r = 0.280 m
Angle between circular loop and magnetic field, θ = 15.1⁰
Magnetic flux is determine by the relation:
....(1)
Here A represents area of the circular loop.
Area of circular loop, A = πr²
Hence, the equation (1) becomes:
Substitute the suitable values in the above equation.
= 1.03 T m²
Answer:
As a substance reaches the melting point, the particles begin to move faster, causing the substance to become a liquid.
Explanation:
lmk if you need a different or more detailed answer :)
have a wonderous day <3
They require a medium to travel through
Answer:
(a) 0.613 m
(b) 0.385 m
(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s
v = 3.68 m/s², θ = 72.6° below the horizontal
Explanation:
(a) Take down to be positive.
Given in the y direction:
v₀ = 0 m/s
a = 10 m/s²
t = 0.350 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²
Δy = 0.613 m
(b) Given in the x direction:
v₀ = 1.10 m/s
a = 0 m/s²
t = 0.350 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²
Δx = 0.385 m
(c) Find: vₓ and vᵧ
vₓ = aₓt + v₀ₓ
vₓ = (0 m/s²) (0.350 s) + 1.10 m/s
vₓ = 1.10 m/s
vᵧ = aᵧt + v₀ᵧ
vᵧ = (10 m/s²) (0.350 s) + 0 m/s
vᵧ = 3.50 m/s
The magnitude is:
v² = vₓ² + vᵧ²
v = 3.68 m/s²
The direction is:
θ = atan(vᵧ / vₓ)
θ = 72.6° below the horizontal