In order to answer this, you need to find the empirical data for the standard entropies. Please refer to this link: http://www.mrbigler.com/misc/energy-of-formation.PDF
For NO₂ gas, the entropy is 240 J/mol-K. For N₂O₄ gas, the entropy is 304.2 J/mol-K. Therefore, <em>the statement is false.</em>
The empirical formula of this compound is
<h3>Empirical formula </h3>
To calculate the empirical formula of a compound, the value of moles of each element is needed.
As we have the information of the mass value, we will use the molar mass expression, which corresponds to:
As the value of the empirical formula must be an integer, simply multiply the two values by a common factor:
So, the empirical formula of this compound is .
Learn more about empirical formula: brainly.com/question/1247523
When the product formation is decreased if a substance B is added to an enzyme reaction and more substrate being added would not increase the amount of produce formed, then we assume that substance b could be a noncompetitive inhibitor. This type of inhibitor would be one that would bind to the enzyme with or without the presence of a substrate in different sites at the same time. It would change the conformation of the enzyme and also the active sites. As a result, the substrate would not be able to bind to the enzyme more effectively than the usual. The overall efficiency would decrease.