Answer:
c. 298 K
Explanation:
Nernst equation is an equation used in electrochemistry that relates the reduction potential of a reaction with the standard potential, temperature and concentrations of the reactants in that are been reducted and oxidized. The formula is:
E = E° - RT / nF ln [Red] / [Ox]
<em>Where R is gas constant (8.314J/molK), T is absolute temperature (In Kelvin), n are moles of electrons and F is faraday constant (K/Volt*mol)</em>
<em />
In electrochemistry, standard temperature is taken as 298K. That means by assuming standard temperature we can substitute T as:
<h3>c. 298 K</h3>
CO2 ; H20- They are the only ones that, on both sides, combined with another element and bonding of atoms
The right answer for the question that is being asked and shown above is that: "C) carbon monoxide and carbon dioxide" hydrocarbons burn completely in an excess of oxygen, the products are <span>C) carbon monoxide and carbon dioxide</span>
When sulfate (SO₄²⁻) serves as the electron acceptor at the end of a respiratory electron transport chain, the product is hydrogen sulfide (H₂S).
How sulfate acts as electon acceptor and electron donor?
- Sulfate (SO₄²⁻) is used as the electron acceptor in sulfate reduction, which results in the production of hydrogen sulfide (H2S) as a metabolic byproduct.
- Many Gram negative bacteria identified in the -Proteobacteria use sulfate reduction, which is a rather energy-poor process.
- Gram-positive organisms connected to Desulfotomaculum or the archaeon Archaeoglobus also utilise it.
- Electron donors are needed for sulfate reduction, such as hydrogen gas or the carbon molecules lactate and pyruvate (organotrophic reducers) (lithotrophic reducers).
Learn more about the Electron transport chain with the help of the given link:
brainly.com/question/24372542
#SPJ4