Answer:
bro I thought someone else answered your question
Answer:
2. option D
3. option C
4. option D
5. option C
6. option B
7. option C
8. option D
9. option C
10. option C
Step-by-step explanation:
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h2>
</h2>
<h3>Hope it is helpful...</h3>
Some equivalent fractions of 1/6 are:
1/6 = 2/12 = 3/18 = 4/24 = 5/30 = 6/36 = 7/42 = 8/48 = 9/54 = 10/60 = 11/66 = 12/72 = 13/78 = 14/84 = 15/90 = 16/96 = 17/102 = 18/108 = 19/114 = 20/120 = 21/126 = 22/132 = 23/138 = 24/144 = 25/150 = 26/156 = 27/162 = 28/168 = 29/174 = 30/180 = 31/186 = 32/192 = 33/198 = 34/204 = 35/210 = 36/216 = 37/222 = 38/228 = 39/234 = 40/240
Answer:
El porcentaje de descuento fue del 10%.
Step-by-step explanation:
Para encontrar el porcentaje de descuento, puedes calcular la variación entre los dos precios ya que este será el porcentaje aplicado. Para hacerlo debes calcular la diferencia entre los dos precios restando el precio final menos el precio original y luego, debes dividir este resultado entre el precio original y multiplicar por 100:
Precio original=50
Precio final=45
((45-50)/50)*100
(-5/50)*100=-0.1*100=-10%
De acuerdo a esto, la respuesta es que el porcentaje de descuento fue del 10%.
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5