Answer:
92 attendees had activity cards
Step-by-step explanation:
Let x be the number of students with activity cards. Then 130-x is the number without, and the total revenue is ...
7x +10(130 -x) = 1024
7x +1300 -10x = 1024 . . . . eliminate parentheses
-3x = -276 . . . . . . . . . . . . . collect terms; subtract 1300
x = 92 . . . . . . divide by 3
92 students with activity cards attended the dance.
_____
<em>Comment on the solution</em>
Often, you will see such a problem solved using two equations. For example, they might be ...
Let 'a' represent the number with an activity card; 'w' the number without. Then ...
- a+w = 130 . . . . the total number of students
- 7a +10w = 1024 . . . . the revenue from ticket sales
The problem statement asks for the value of 'a', so you want to eliminate w from these equations. You can do that using substitution. Using the first equation to write an expression for w, you have ...
w = 130-a
and making the substitution into the second equation gives ...
7a +10(130 -a) = 1024
This should look a lot like the equation we used above. There, we skipped the extra variable and went straight to the single equation we needed to solve.
I’m not gay naanajajjajajajajajajjaka
Given: 11-pound mixture of peanuts, almonds, and raisins
Cost:
peanuts - 1.5 per pound
almonds - 3 per pound
raisins - 1.5 per pound
mixture:
twice as many peanuts as almond; total cost of mixture is 21.
a + p + r = 11 lbs
a + 2a + r = 11 lbs
3a + r = 11
r = 11 - 3a
1.5(2a) + 3a + 1.5r = 21
3a + 3a + 1.5r = 21
6a + 1.5r = 21
6a + 1.5(11-3a) = 21
6a + 16.5 - 4.5a = 21
6a - 4.5a = 21 - 16.5
1.5a = 4.5
1.5a/1.5 = 4.5/1.5
a = 3
almonds = 3 lbs
peanuts = 2a = 2(3) = 6lbs
raisins = 11 - 3a = 11 - 3(3) = 11 - 9 = 2 lbs
<span>My answer is: C. 6 lbs peanuts, 3 lbs almonds, 2 lbs raisins </span>