Answer:
mechanical energy per unit mass is 887.4 J/kg
power generated is 443.7 MW
Explanation:
given data
average velocity = 3 m/s
rate = 500 m³/s
height h = 90 m
to find out
total mechanical energy and power generation potential
solution
we know that mechanical energy is sum of potential energy and kinetic energy
so
E = ×m×v² + m×g×h .............1
and energy per mass unit is
E/m = ×v² + g×h
put here value
E/m = ×3² + 9.81×90
E/m = 887.4 J/kg
so mechanical energy per unit mass is 887.4 J/kg
and
power generated is express as
power generated = energy per unit mass ×rate×density
power generated = 887.4× 500× 1000
power generated = 443700000
so power generated is 443.7 MW
I believe the answer is potential energy if i remember correctly.
Explanation:
PEgrav = m *• g • h
In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.
www.physicsclassroom.com › energy
Potential Energy - The
Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib