Actual yield over theoretical yield, then multiply by 100
Molar mass :
HC₂H₃O₂ = 1 + 12*2 + 1 * 3 + 16 * 2 = 60 g/mol
1 mole <span>HC₂H₃O₂ -------------- 60 g
</span>1.26x10-⁴ mole ----------------- mass
mass = 1.26x10-⁴ * 60
mass = 0.00756 g of <span>HC₂H₃O₂</span>
hope this helps!
It is important to have the correct bond angles of the different atoms and the shape of the molecule due to following reasons;
Among other properties the polarity of compounds mainly depend upon the shape and bond angles of that particular compound. For example, considering the molecule of water, we already know that it is a polar molecule with partially positive hydrogen atoms and partially negative oxygen atoms and acts as universal solvent. The bond angle in water is about 104.5° with a Bent geometry. Unlike carbon dioxide (CO₂) which has Linear structure with bond angle 180° and is non-polar in nature therefore, the bent geometry in water is responsible for the polarity.
Other properties which can also be predicted by predicting the bond angles along with molecular geometries are;
i) Magnetism
ii) Phase of matter
iii) Color
iv) Reactivity
v) Biological activities <em>e.t.c</em>
Correct Question: what is the oxidizing agent in the reaction.
2MnO4–(aq) +10Cl–(aq) + 16H+(aq) --------> 5Cl2(g) + 2Mn2+(aq) +8H2O(l)
Answer: MnO4-is the oxidizing agent
Explanation:
In the reaction 2MnO4–(aq) +10Cl–(aq) + 16H+(aq) --------> 5Cl2(g) + 2Mn2+(aq) +8H2O(l)
Oxidizing agent oxidizes other molecules while the themselves get reduced.
oxidizing agents give away Oxygen to other compounds.
MnO4-is the oxidizing agent because
On the reactants side
Oxidation number of Mn in 2MnO4- is +7
Oxidation number of Cl- is -1
On the products side
Oxidation number of Mn is +2
While oxidation number of Cl is zero
Therefore the oxidizing agent is 2MnO4 because is oxidizes Chlorine from -1 to 0 while itself got reduced from oxidation state of +7 to +2