6.02 x 10^6
Hoped that helped.
Answer:
thats one hint. but for 1 it will produce lava
Explanation:
number 2
some of the Earth's grandest mountains are composite volcanoes--sometimes called stratovolcanoes. They are typically steep-sided, symmetrical cones of large dimension built of alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs and may rise as much as 8,000 feet above their bases
Ok so, remember that t<span>he average atomic mass is what is seen on the periodic table. It is the average mass of all of the isotopes with their frequency taken into account. What you need to do is add the products of the masses and frequencies Just like this:</span>
<span>0.903*267.8 + 0.097*270.9
When you add it the result is what you are looking for</span>
The second option only.
<h3>Explanation</h3>
A base neutralizes an acid when the two reacts to produce water and a salt.
Sulfuric acid H₂SO₄ is the acid here. There are more than one classes of bases that can neutralize H₂SO₄. Among the options, there are:
Metal hydroxides
Metal hydroxides react with sulfuric acid to produce water and the sulfate salt of the metal.
.
The formula for calcium sulfate in option A is spelled incorrectly. Why? The charge on each calcium is +2. The charge on each sulfate ion is -2. Unlike ions, it takes only one ion to balance the charge on each ion. As a result, and ions in calcium sulfate exist on a 1:1 ratio.
.
Ammonia, NH₃
Ammonia NH₃ can also act as a base and neutralize acids. NH₃ exists as NH₄OH in water:
.
The ion acts like a metal cation. Similarly to the metal hydroxides, NH₃ (or NH₄OH) neutralizes H₂SO₄ to produce water and a salt:
.
The formula of the salt (NH₄)₂SO₄ in the fourth option spelled the ammonium ion incorrectly.
As part of the salt (NH₄)₂SO₄, the ammonium ion NH₄⁺ is one of the products of this reaction and can't neutralize H₂SO₄ any further.
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N() . All polar molecules show dipole-dipole interaction (and ). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds, has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.