Answer:
P_2 =0.51 atm
Explanation:
Given that:
Volume (V1) = 2.50 L
Temperature (T1) = 298 K
Volume (V2) = 4.50 L
at standard temperature and pressure;
Pressure (P1) = 1 atm
Temperature (T2) = 273 K
Pressure P2 = ??
Using combined gas law:
Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp =
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp =
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp =
0.0104 =
0.0104 + - 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are = 98.7 MPa and P(N₂O₄) = 101.3 MPa
Explanation:
<u></u>
<u>-to determine how long ago two species of animals shared an ancestor</u>
<u></u>
The molecular lock describes a method which utilizes mutation rates for DNA over time, to determine the divergence of two species sharing common ancestry,due to evolution. Along with genetic drift, selective mating and natural selection, evolution may occur within populations due to spontaneous heritable changes to DNA, called mutations, over time.
Further Explanation:
During reproduction, other events, such as crossing over during mitosis and meiosis, mutations lead to increases in genetic variation. This variation refers to the genetic characteristics present within a species. Mutations may be either beneficial or deleterious; they are maintained within cells, as they form new traits called alleles. Beneficial mutations may confer traits that increase the fitness of a species, along with ensuring survival by conferring a protective advantage- these phenotypic differences between organisms are called adaptations.
Sequences of DNA make up genes which can have different forms called alleles. DNA, which makes up the genotype, is transcribed into mRNA and later translated into amino acids which are linked together by rRNA to form proteins which make up the phenotype of an organism. Mutations in DNA sequences affect the corresponding mRNA and thus the protein encoded.
Learn more about mutations at brainly.com/question/4602376
Learn more about DNA and RNA at brainly.com/question/2416343?source=aid8411316
#LearnWithBrainly