Gravity
Approximately 4.5 billion years ago, gravity pulled a cloud of dust and gas together to form our solar system.
Density is given as mass / volume.
Mass is the sphere is 100 g.
Volume of the sphere = (pi∗r3)∗4/3
(
p
i
∗
r
3
)
∗
4
/
3
=(4∗22∗3∗3∗3)/(7∗3)cm3
=
(
4
∗
22
∗
3
∗
3
∗
3
)
/
(
7
∗
3
)
c
m
3
=792/7
=
792
/
7
cm3
3
Therefore, Density is 100/(792/7)g/cm3
100
/
(
792
/
7
)
g
/
c
m
3
Which gives: density = 0.883838 g/cm3
g
/
c
m
3
If you want to change the units to kg per cubic metres, then we need to divide this value by 1000( for g to kg) and multiply by 100 * 100 * 100 (for cm to m).
This makes the density to be 883.83 kg/m3
The atoms in air are combined with oxygen present in the air and when we inhale the air, oxygen is moved into the body then atoms in oxygen are carried by red blood cells the blood is pumped to the lungs and when oxygen is transported to the body organ, the atoms in lungs become the part of human cells.
Answer:
CH₃CH₂CH₂COOH > CH₃CH₂COOH > ClCH₂CH₂COOH > ClCH₂COOH
Explanation:
Electron-withdrawing groups (EWGs) increase acidity by inductive removal of electrons from the carboxyl group.
Electron-donating groups (EDGs) decrease acidity by inductive donation of electrons to the carboxyl group.
- The closer the substituent is to the carboxyl group, the greater is its effect.
- The more substituents, the greater the effect.
- The effect tails off rapidly and is almost zero after about three C-C bonds.
CH₃CH₂-CH₂COOH — EDG — weakest — pKₐ = 4.82
CH₃-CH₂COOH — reference — pKₐ = 4.75
ClCH₂-CH₂COOH — EWG on β-carbon— stronger — pKₐ = 4.00
ClCH₂COOH — EWG on α-carbon — strongest — pKₐ = 2.87
Let A be the 80% solution and B be the 20% solution and P be the produce solution of 70%. Va and Vb and Vp are the volumes of A and B and P respectively.
Va + 60 = Vp
0.7Vp = 0.8Va + 0.2(60)
Substituting the value of Vp from the first equation:
0.7(Va + 60) = 0.8Va + 12
30 = 0.1Va
Va = 300 gallons