If I knew the answer I would help but I don’t know sorry
Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
Answer:
400 N
Explanation:
By the law of friction,
is the maximum frictional force, is the coefficient of friction and is the reaction on the refrigerator. On a horizontal surface, the reaction is equal to the weight of the refrigerator.
While not moving, the fricition on the refrigerator is static friction. So,
This is the maximum frictional force and is more than the applied horizontal force of 400 N. Frictional force cannot be more than the applied force, else it would actually pull the refrigerator backwards (a strange thing, if it were to happen). It is equal to the extent of the applied force because the applied force is not enough to overcome the maximum.
Hence the frictional force is 400 N.
PS: Note that we do not use the coefficient of kinetic friction because applied force could not overcome the static friction.
The equivalent resistance of n resistors in series is given by:
In our circuit, we have three resistors of
each, therefore the equivalent resistance of the circuit is