Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:
Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
The formula for Force is F = MA, or Force is equivalent to the product of Mass and Acceleration.
F = 128N.
M = 35.2kg.
128 = 35.2A
Divide both sides by 35.2 to solve for the acceleration.
A = ~3.636
The acceleration is 3.636 m/s^2.
I hope this helps!
Answer:
The current of the solenoid is 0.0129 A.
Explanation:
The movement of the electron within the solenoid in a circle is produced by equaling the magnetic force and the centripetal force, as follows:
Where:
I: is the current
m: is the electron's mass = 9.1x10⁺³¹ kg
v: is the electron's speed = 3.0x10⁵ m/s
μ₀: is the permeability magnetic = 4πx10⁻⁷ T.m/A
n: is the number of turns per unit length = 35/cm
r: is the radius of the circle = 3.0 cm
e: is the electron's charge = 1.6x10⁻¹⁹ C
Therefore, the current of the solenoid is 0.0129 A.
I hope it helps you!
Answer:
a = 17.68 m/s²
Explanation:
given,
length of the string, L = 0.8 m
angle made with vertical, θ = 61°
time to complete 1 rev, t = 1.25 s
radial acceleration = ?
first we have to calculate the radius of the circle
R = L sin θ
R = 0.8 x sin 61°
R = 0.7 m
now, calculating at the angular velocity
ω = 5.026 rad/s
now, radial acceleration
a = r ω²
a = 0.7 x 5.026²
a = 17.68 m/s²
hence, the radial acceleration of the ball is equal to 17.68 rad/s²
Answer:
v = 5.166 10² m / s
Explanation:
We can solve this exercise using the kinematics equations
v = v₀ + at
as the bullet starts from rest its initial velocity is zero
v = a t
let's calculate
v = 6.3 10⁵ 8.2 10⁻⁴
v = 5.166 10² m / s