Answer:
F=G(m1m2)/Rsquare if radius is given
F=G(m1m2)/dsquare if distance is given
where,
f =gravitational force
G =gravitational constant
m1=mass of one object
m2=mass of another object
d=distance between two object from their center r=radius of earth/planet
<span>Answer:
For a disc, the moment of inertia about the perpendicular axis through the center is given by 0.5MR^2.
where M is the mass of the disc and R is the radius of the disc.
For the axis through the edge, use parallel axis theorem.
I = I(axis through center of mass) + M(distance between the axes)^2
= 0.5MR^2 + MR^2 (since the axis through center of mass is the axis through the center)
= 1.5 MR^2</span>
-- Looking at the dots casually, they look green because they absorb all other
colors of light, and only green light is left to proceed to your eyes. (In order for
this to work, there has to be some green in the light shining on the dots.
Daylight and most light bulbs work fine.)
-- The filter looks red because it absorbs all other colors of light, and only
the red light is left to pass through the filter and come out on the other side.
-- When the green light from the dots hits the red filter, it's absorbed in the
filter, and there's no light left to come out on the other side.
If you're looking through the filter at the dots, they look <em>black</em>.
a. Particles in warmer objects make particles in colder objects move faster.