An energy that is related to mass and speed would most likely be kinetic energy.
K= 1/2mv^2
Answer:
How fast and efficient the energy is released.
Explanation:
Before burning the marshmallow energy is stored in it in the form of chemical bond energy or chemical potential energy. So upon burning this energy is released. So there will be a difference in energy release from a burned marshmallow and the one we eat straight from package.
Answer:
A-500 N
Explanation:
The computation of the tension in the chain is shown below
As we know that
F = ma
where
F denotes force
m denotes mass = 7
And, a denotes acceleration
Now for the acceleration we have to do the following calculations
The speed (v) of the hammer is
v = Angular speed × radius
where,
Angular seed = 2 × π ÷ Time Period
So, v = 2 × π × r ÷ P
v = 2 × 3.14 × 1.8 ÷ 1
= 11.304 m/s
Now
a = v^2 ÷ r
= 70.98912 m/s^2
Now the tension is
T = F = m × a
= 7 × 70.98912
= 496.92384 N
= 500 N
Answer:
Regular reflection
Explanation:
- Reflection is the phenomenon that occurs when a light wave hits the interface between two different mediums and it bounces off back into the same medium. The angle of reflection (measured between the reflected ray and the perpendicular to the interface) is equal to the angle of incidence (measured between the incident ray and the perpendicular to the interface).
There are two different types of reflection:
- Regular reflection: this occurs when the interface between the two mediums is smooth (such as in the case of the still lake), so all the parallel light waves (which have same angle of incidence) are reflected exactly with the same angle of reflection (so, they come out all with same direction)
- Diffuse reflection: this occurs when the interface between the two mediums is not smooth, so each light ray is reflected with a different angle because it hits the interface with a different angle of incidence.
Therefore, in the case of the still lake, the correct answer is regular reflection.