G(2)=2
For this, you can plug in 2 everywhere you see an n. So the equation will read:
g(2)=g(2-1)+2 -> g(2)=g(1)+2. Since we are given g(1)=0, we can plug in 0 where we see g(1). The equation is now. g(2)=0+2. So, g(2)=2.
<span>As heat energy reaches an object it can be absorbed in a similar manner to the way sponges absorb water. Heat enters an object, warming it. The longer the object is exposed to the heat source, the more heat it absorbs.</span>
The question ask for the percentage of the abundance of galium-69 where there is two isotopes of galium: the 69Ga and the 71Ga. The average atomic mass of gallium is 69.723 amu. So the formula would be <span>69.723amu=(%x)∗(68.926amu)+(1−%x)∗(70.025amu) and the answer to this is 1.58%</span>
<h2>Answer:</h2>
The option B is correct option. Which is release of heat and/or light energy .
<h3>Explanation:</h3>
According to the definition of exothermic reaction :
<em>An exothermic reaction is a chemical reaction that releases energy by light or heat.</em>
From definition option B (release of heat and/or light energy) indicates that an exothermic reaction has taken place.
.