The nucleus, that dense central core of the atom, contains both protons and neutrons. Electrons are outside the nucleus in energy levels. Protons have a positive charge,neutrons have no charge, and electrons have a negative charge. A neutral atom contains equal numbers of protons and electrons.
<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
Answer:
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Explanation:
A → B
Initial concentration of the reactant = x
Final concentration of reactant = 10% of x = 0.1 x
Time taken by the sample, t = ?
Formula used :
where,
= initial concentration of reactant
A = concentration of reactant left after the time, (t)
= half life of the first order conversion = 56.6 hour
= rate constant
Now put all the given values in this formula, we get
t = 188.06 hour
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
A. 1,2,3. The solutions are getting lighter meaning the concentration is decreasing. Its most likely that water was added to dilute the solutions.