Answer:
Kc = 2.34 mol*L
Explanation:
The calculation of the Kc of a reaction is performed using the values of the concentrations of the participants in the equilibrium.
A + B ⇄ C + D
Kc = [C] * [D] / [A] * [B]
According to the reaction
Kc = [SO2]^2 * [O2]^2 / [SO3]^2
Knowing the 0.900 mol of SO3 is placed in a 2.00-L it means we have a 0.450 mol/L of SO3
0.450 --> 0 + 0 (Beginning of the reaction)
0.260 --> 0.260 + 0.130 (During the reaction)
0.190 --> 0.260 + 0.130 (Equilibrium of the reaction)
Kc = [0.260]^2 + [0.130]^2 / [0.190]^2
Kc = 2.34 mol*L
Runoff (Hope this helped)
<span>that it is cooler than the lithosphere.</span>
C can be the only correct answer - 6.023 x 10^23 is the amount of molecules in a mol of an element. 4.5 x 6.023 x 10^23 can not equal anything but C.
4.5 x 6.023 x 10^23 = 2.71035 x 10^24
Answer:
- <u>Yes, it is 14. g of compound X in 100 ml of solution.</u>
Explanation:
The relevant fact here is:
- the whole amount of solute disolved at 21°C is the same amount of precipitate after washing and drying the remaining liquid solution: the amount of solute before cooling the solution to 21°C is not needed, since it is soluble at 37°C but not soluble at 21°C.
That means that the precipitate that was thrown away, before evaporating the remaining liquid solution under vacuum, does not count; you must only use the amount of solute that was dissolved after cooling the solution to 21°C.
Then, the amount of solute dissolved in the 600 ml solution at 21°C is the weighed precipitate: 0.084 kg = 84 g.
With that, the solubility can be calculated from the followiing proportion:
- 84. g solute / 600 ml solution = y / 100 ml solution
⇒ y = 84. g solute × 100 ml solution / 600 ml solution = 14. g.
The correct number of significant figures is 2, since the mass 0.084 kg contains two significant figures.
<u>The answer is 14. g of solute per 100 ml of solution.</u>