Answer:
2 Atm; 2.016 g
Explanation:
Changing the volume without changing the temperature or mass only changes the pressure. Volume and pressure are inversely proportional so halving the volume will double the pressure.
P = 1 Atm, T = 0 °C are "standard" temperature and pressure (STP). The volume of 1 mole of gas is 22.4 L under these conditions. That means the amount of hydrogen gas in the cylinder is 1 mole, so has a mass of 2.016 g.
After the volume reduction, the pressure is 2 Atm, and the mass remains 2.016 g.
Answer/Explanation: Two atoms of oxygen form the basic oxygen molecule--the oxygen we breathe that is essential to life. The third oxygen atom can detach from the ozone molecule, and re-attach to molecules of other substances, thereby altering their chemical composition.
The answer is <span>D.when the aim is to show electron distributions in shells. This is because there are some instances when elements don't possess a regular or normal electron configuration. There are those who have special electron configurations wherein a lower subshell isn't completely filled before occupying a higher subshell. It is best to visualize such cases using the orbital notation.</span>
Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.
Answer: homogeneous
Explanation: The taste of soda water is constant till the end. The carbon dioxide is dissolved homogeneously in soda water.