Answer:
This is an attempt to more clearly visualize the nature of single slit diffraction. The phenomenon of diffraction involves the spreading out of waves past openings which are on the order of the wavelength of the wave.
Explanation:
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.
Answer:
Explanation:
When a standing wave is formed with six loops means the normal mode of the wave is n=6, the frequency of the normal mode is given by the expression:
Where is the length of the string and the velocity of propagation. Use this expression to find the value of .
The velocity of propagation is given by the expression:
Where is the desirable variable of the problem, the linear mass density, and is the tension of the cord. The tension is equal to the weight of the mass hanging from the cord:
With the value of the tension and the velocity you can find the mass density:
Answer:
12.2 m
Explanation:
Given:
v₀ = 15.6 m/s
v = 0 m/s
a = -10 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (15.6 m/s)² + 2 (-10 m/s²) Δy
Δy = 12.2 m
Answer:
Explanation:
q = Charge of proton =
v = Velocity of proton =
c = Speed of light =
B = Magnetic field = 0.00687 T
= Angle =
Magnetic force is given by
The magnetic force acting on the proton is