Answer:
Step-by-step explanation:
In a survey of first graders, their mean height was 51.6 inches with a standard deviation of 3.6 inches. Assuming the heights are normally distributed, what height represents the first quartile of these students?
54.03 inches
48.57 inches
48.00 inches
49.17 inches
Answer:
(a): <u>x</u><u> </u><u>is</u><u> </u><u>3</u><u> </u><u>and</u><u> </u><u>ky</u><u> </u><u>is</u><u> </u><u>-</u><u>1</u>
<u>(</u><u>b</u><u>)</u><u>:</u><u> </u><u>k</u><u> </u><u>is</u><u> </u><u>-</u><u>2</u>
Step-by-step explanation:
Let: 3x + ky = 8 be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>a</em><em>)</em>
x - 2 ky = 5 be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>b</em><em>)</em>
<em> </em>Then multiply <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>a</em><em>)</em><em> </em>by 2:
→ 6x + 2ky = 16, let it be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>c</em><em>)</em>
Then <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>c</em><em>)</em><em> </em><em>+</em><em> </em><em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>b</em><em>)</em><em>:</em>
<em></em>
<em>T</em><em>h</em><em>e</em><em>n</em><em> </em><em>k</em><em>y</em><em> </em><em>:</em>
The answer to this is 7.5.
Answer:
length = 2x = 2(9) = 18 yds
Step-by-step explanation:
Let width = x
Let length = 2x
Area = 162 yd2
length × width = Area
2x(x) = 162
2x2 = 162
Divide by 2 on both sides of equation.
x2 = 81
Square-root both sides of equation to undo the exponent.
x = √(81)
x = 9
Substitute this x value into the initial variables.
width = x = 9 yds
length = 2x = 2(9) = 18 yds
Answer:
The margin of error for a 99% confidence interval for the population mean is 1.8025.
Step-by-step explanation:
We have that to find our level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Ztable as such z has a pvalue of .
So it is z with a pvalue of , so
Now, find the margin of error M as such
In which is the standard deviation of the population and n is the size of the sample.
In this problem:
So
The margin of error for a 99% confidence interval for the population mean is 1.8025.