Answer:
50% of it .
Explanation:
50% of it is illuminated by the Sun.
Answer:
Explanation:
When we push the box from the bottom of the incline towards the top then by work energy theorem we can say that
Work done by all the forces = change in kinetic energy of the system
here we know that
also we know that the length of the incline is given as
now we have
so we have
Answer:
the boat would be deeped by 3200 m
Explanation:
Given that
The boat arrives back after 4 seconds
And, the speed of the sound in water is 1,600 m/s
We need to find out how much deep is the water
So,
As we know that
Distance = ( speed × time) ÷ 2
Here we divided by 2 because the boat arrives back
= (1600 × 4) ÷ 2
= 3200 m
Therefore the boat would be deeped by 3200 m
Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m
The best answer is letter (A) a double pulley system. Atwood Machine is normally used as a measurement in balancing to object to verify the mechanical law of motion with constant acceleration.