Answer:
Chemical energy to electrical energy
Explanation:
In nature, there are several types of energy.
In this example (a flashlight being turned on), we have a conversion of energy from chemical energy to electrical energy. In fact:
- Chemical energy is the energy stored in the chemical bonds of the molecules of the substances used inside the battery. When the chemical reaction inside the battery occurs, this energy is liberated, and it is used to "push" the electrons along the circuit connected to the battery
- Electric energy is the energy associated to the motion of the electrons along the circuit of the flashlight; it is the energy associated to an electric current.
Moreover, in the flashlight the electric energy is then converted into two more types of energy: light energy (since the bulb in the flashlight produces light) and heat energy (because the flashlight also produces heat, so thermal energy).
Answer:
Friction between the box and the floor is 25N to the left.
Explanation:
According to Newton's second law of motion, the net force acting on an object is equal to the produce between the object's mass and its acceleration:
where
m is the mass of the object
a is its acceleration
In this problem, we have two forces acting on the object:
- The applied force, F = 25 N, to the right
- The force of friction , opposing the motion of the box, so to the left
So we can write the net force as
Also, we know that the box is moving at constant speed: this means its acceleration is zero, so
Therefore
WHich means:
And therefore,
which means that the force of friction is also 25 N.
The horizontal speed of the object 1.0 seconds later is 1) 5.0 m/s.
Explanation:
The motion of an object thrown horizontally off a cliff is a projectile motion, which follows a parabolic path that consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
This means that the horizontal speed of an object in projectile motion does not change, and remains constant during the whole motion.
Since in this case the object has been launched with a horizontal speed of
v = 5.0 m/s
this means that this speed will remain constant during the motion, so its horizontal speed 1.0 s later is also 5.0 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
(a) 1.21 m/s
(b) 2303.33 J, 152.27 J
Explanation:
m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s
(a) Let their velocity after striking is v.
By use of conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v
v = ( - 356.25 + 607.94) / 208 = 1.21 m /s
(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2
= 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)
= 0.5 (1335.94 + 3270.7) = 2303.33 J
Kinetic energy after collision = 1/2 (m1 + m2) v^2
= 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J
The value of maximum velocity will be 0.3464 m/s². Energy or work is equal to the product of force and displacement.
<h3>What is velocity?</h3>
The change of distance with respect to time is defined as speed. Speed is a scalar quantity. It is a time-based component. Its unit is m/sec.
The given data in the problem is
Mass of the body is,(m= 200g)
Amplitude is,(A =20 mm)
Maximum force is,F= 0.6 N
To find;
Maximum velocity
Energy or work is equal to the product of force and displacement.
Hence,the value of maximum velocity will be 0.3464 m/s².
To learn more about the velocity, refer to the link;
brainly.com/question/862972
#SPJ2