The horizontal speed of the object 1.0 seconds later is 1) 5.0 m/s.
Explanation:
The motion of an object thrown horizontally off a cliff is a projectile motion, which follows a parabolic path that consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
This means that the horizontal speed of an object in projectile motion does not change, and remains constant during the whole motion.
Since in this case the object has been launched with a horizontal speed of
v = 5.0 m/s
this means that this speed will remain constant during the motion, so its horizontal speed 1.0 s later is also 5.0 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.
Answer:
mgh₁ + ½mv₁² = mgh₂ + ½mv₂²
Explanation:
Initial total energy = final total energy
PE₁ + KE₁ = PE₂ + KE₂
mgh₁ + ½mv₁² = mgh₂ + ½mv₂²