Answer:
ΔH = - 272 kJ
Explanation:
We are going to use the fact that Hess law allows us to calculate the enthalpy change of a reaction no matter if the reaction takes place in one step or in several steps. To do this problem we wll add two times the first step to second step as follows:
N2(g) + 3H2(g) → 2NH3(g) ΔH=−92.kJ Multiplying by 2:
2N2(g) + 6H2(g) → 4NH3(g) ΔH=− 184 kK
plus
4NH3(g) + 5O2(g) → 4NO(g) +6H2O(g) ΔH=−905.kJ
__________________________________________________
2N2(g) + 6H2(g) + 5O2(g)→ 4NO(g) + 6H2O(g) ΔH = (-184 +(-905 )) kJ
ΔH = -1089 kJ
Notice how the intermediate NH3 cancels out.
As we can see this equation is for the formation of 4 mol NO, and we are asked to calculate the ΔH for the formation of one mol NO:
-1089 kJ/4 mol NO x 1 mol NO = -272 kJ (rounded to nearest kJ)
Answer:
C
Explanation:
This is essentially one of the several safety measures in the chemical laboratory. This particular approach is one used in the case of fire eventualities.
A is wrong
This is because in the advent of a fire incident, it is necessary to evacuate the building as a whole. Meeting in the hallway is still within the building which is not the right thing to do when there’s a fire outbreak. Occupants are expected to leave the building immediately
B. Is also wrong. Taking time to pack your belongings might make you be caught in the inferno. It is expected that you leave the building at once
The answer its O-H.........
Answer: Oxidation number of chlorine in potassium chlorate...
so, oxidation state of chlorine in potassium chlorate is +1. and yea!!
Explanation: hope this help