consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
False
Explanation:
that is cohesion. adhesion is force between dissimilar molecules of a body
"Force of friction between the crate and the floor of the truck" is the one force among the choices given in the question that <span>causes the crate to accelerate forward. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
Answer:
c. 12,500
Explanation:
Original number of atoms = 100,000 atoms
Half- life = 10min
Unknown:
The number of atoms that will remain after 10min = ?
Solution:
The half - life is the time taken for half of a radioactive substance to decay by half.
Time taken Number of atom half life
10min 100000 _
20min 50000 1
30min 25000 2
40min 12500 3
Part a
Answer: NO
We need to calculate the distance traveled once the brakes are applied. Then we would compare the distance traveled and distance of the barrier.
Using the second equation of motion:
where s is the distance traveled, u is the initial velocity, t is the time taken and a is the acceleration.
It is given that, u=86.0 km/h=23.9 m/s, t=0.75 s,
Since there is sufficient distance between position where car would stop and the barrier, the car would not hit it.
Part b
Answer: 29.6 m/s
The maximum distance that car can travel is
The acceleration is same,
The final velocity, v=0
Using the third equation of motion, we can find the maximum initial velocity for car to not hit the barrier:
Hence, the maximum speed at which car can travel and not hit the barrier is 29.6 m/s.