Answer:
Magnetism is the force exerted by magnets when they attract or repel each other.
Answer:
E = 31.329 N/C.
Explanation:
The differential electric field at the center of curvature of the arc is
<em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>
where is the radius of curvature.
Now
,
where is the charge per unit length, and it has the value
Thus, the electric field at the center of the curvature of the arc is:
Now, we find and . To do this we ask ourselves what fraction is the arc length 3.0 of the circumference of the circle:
and this is
radians.
Therefore,
evaluating the integral, and putting in the numerical values we get:
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.
-- The effect of gravity is: There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.
-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal.
It's the product that counts. Bigger product ==> stronger force, in direct proportion.
-- The strength of the forces also depends on the distance between the objects' centers. More distance => weaker force. Actually, (more distance)² ==> weaker force.
-- The forces are <em>equal in both directions</em>. Your weight on Earth is exactly equal to
the Earth's weight on you. You can prove that. Turn your bathroom scale face down
and stand on it. Now it's measuring the force that attracts the Earth toward you.
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.
-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth.
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal. But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.
-- This works exactly the same for every pair of masses in the universe. Gravity
is everywhere. You can't turn it off, and you can't shield anything from it.
-- Sometimes you'll hear about some mysterious way to "defy gravity". It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon
-- use the force of air resistance to LIFT an airplane.
-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons. (That's
about 2.205 pounds). The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram. In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.
I hope I told you something that you were actually looking for.
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s
Answer:
Explanation:
For this problem to be easier to calculate, we can represent the triangle as a right triangle whose right angle is located at the origin of a coordinate system. (See picture attached).
With this disposition of the triangle, we can start finding our integral. The hydrostatic force can be set as an integral with the following shape:
γhxdy
we know that γ=62.5 lb/
from the drawing, we can determine the height (or depth under the water) of each differential area is given by:
h=8-y
x can be found by getting the equation of the line, which we'll get by finding the slope of the line and using one of the points to complete the equation:
when substituting the x and y-values given on the graph, we get that the slope is:
once we got this slope, we can substitute it in the point-slope form of the equation:
which yields:
which simplifies to:
we can now solve this equation for x, so we get that:
with this last equation, we can substitute everything into our integral, so it will now look like this:
Now that it's all written in terms of y we can now simplify it, so we get:
we can now proceed and evaluate it.
When using the power rule on each of the terms, we get the integral to be:
By using the fundamental theorem of calculus we get:
When solving we get: