Reduction reactions are those reactions that reduce the oxidation number of a substance. Hence, the product side of the reaction must contain excess electrons. The opposite is true for oxidation reactions. When you want to determine the potential difference expressed in volts between the cathode and anode, the equation would be: E,reduction - E,oxidation.
To cancel out the electrons, the e- in the reactions must be in opposite sides. To do this, you reverse the equation with the negative E0, then replacing it with the opposite sign.
Pb(s) --> Pb2+ +2e- E0 = +0.13 V
Ag+ + e- ---> Ag E0 = +0.80 V
Adding up the E0's would yield an overall electric cell potential of +0.93 V.
Answer:
The sun radiates energy in all directions.
Explanation:
Most of it dissipates into space, but the tiny fraction of the sun's energy that reaches Earth is enough to heat the planet and drive the global weather system by warming the atmosphere and oceans
Answer:
T<span>he gaseous product of this reaction is water (Option-A).
Explanation:
This is a very interesting experiment. Take sugar in a beaker and add concentrated Sulfuric Acid into it. After a while an exothermic reaction will initiate with the formation of Carbon Black and Water vapors. You will observe the formation of hard and hot stem like body which is completely Black. This blackness is due to C and the water vapors will eliminate in the form of steam as the temperature has arised.</span>
Answer:
We normally separate unreacted hydrogen from ammonia (product) in Haber process. The reaction mixture contains some ammonia, plus a lot of unreacted hydrogen and nitrogen. The mixture is cooled and compressed, causing the ammonia gas to condense into a liquid.