Yes. This equation given:
______________________________
" y = (½)x + 4 " ; in point-slope form; also known as: "slope-intercept form" ; is:
______________________________________
" y = (½)x + 4 " .
______________________________________
In other words, the equation given is ALREADY written in "point-slope form" ; or, "slope-intercept form".
______________________________________
Note: An equation that is written in "point-slope form"
(or, "slope-intercept form"), is written in the format of:
______________________________________
" y = mx + b " ;_________________
in which:_________________
"y" is a single, "stand-alone" variable on the "left-hand side of the equation"; "m" is the coefficient of "x"; also:
"m" is the slope of the line; which is what we want to solve for;
"b" is the "y-intercept"; or more precisely, the value of "x"
(that is; the "x-coordinate") of the point at which "y = 0";
that is, the value of "x" ; or the "x-coordinate" of the point at which
the graph of the equation crosses the "x-axis".
______________________________________
Note that in our given equation, which is written in "point-slope form" (or, "slope-intercept form" — that is: " y = mx + b " ;
_______________________________________
which is: " y = (½)x + 4 " ;
_______________________________________
we have:
_______________________________________
"y" isolated as "stand-alone" variable on the "left-hand side" of the equation;
m = ½ ;
b = 4 .
_______________________________________
Answer:
I failed math twice
Step-by-step explanation:
Answer:
±5sqrt(2) =x
Step-by-step explanation:
65=15+x^2
Subtract 15 from each side
65-15=15-15+x^2
50 = x^2
Take the square root of each side
±sqrt(50) = sqrt(x^2)
±sqrt(25*2) =x
±sqrt(25)sqrt(2) =x
±5sqrt(2) =x
Answer:
The median and IQR
Step-by-step explanation: