by angular momentum conservation we will have
angular momentum of child + angular momentum of merry go round = 0
angular momentum of child = mvR
m = mass of child
R = radius of child
v = speed = 2 m/s
now let's say moment of inertia of merry go round is I
so we will have
so merry go round will turn in opposite direction with above speed
The force (F) of attraction or repulsion between two point charges (Q1 and Q2) is given by the following rule:
F = <span>(k * q1 * q2) / (r^2) where:
</span>q1 and q2 are the charges
k is coulomb's constant = 9 x 10^9<span> N. m</span>2/ C<span>2
</span>r is the distance between the two charges.
Applying the givens in the mentioned equation, we find that:
F = (9 x 10^9<span> x 0.07 x 10^6 x 2) / (0.0108)^2 = 1.08 x 10^19 n </span>
Answer:
When the termination is a terminal block, care must be taken to ensure a good electrical connection without damaging the conductor. Terminals should not be used for more than one
Explanation:
The Terminal block being a modular block, having insulated frame, which can secure more than two wires in it. It has a conducting strip in it. These terminal clocks helps in making the connection safer as well as organised. These terminal blocks are used for power distribution in safer way. Its potential is it can distribute power from single to multiple output. The conductor is used for making it proper contact.
Answer:
4 Joules (if you mean 2000 grams)
4000 Joules (if you mean 2000 kilograms)
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>