<span>Matter is c) something that has mass and occupies space. Everything in our known universe takes up space, and everything is made up of matter. Matter as a concept is not something that can have any unit of measurement put upon it. </span>
Answer:
Cp= 0.44 J/g.C
This is heat capacity of metal.
Explanation:
From energy conservation
Heat lost by metal = Heat gain by water +Heat gain by calorimeter
Because here temperature of metal is high that is why it loose the heat.The temperature of water and calorimeter is low that is why they gain the heat.
final temperature is T= 30.5 C
We know that sensible heat transfer given as
Q= m Cp ΔT
m=Mass
Cp=Specific heat capacity
ΔT=Temperature difference
By putting the values
55 x Cp ( 99.5 - 30.5) = 40 x 4.184 ( 30.5- 21 ) + 10 x ( 30.5 - 21)
Cp ( 99 .5- 30.5) = 30.65
Cp= 0.44 J/g.C
This is heat capacity of metal.
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Linear momentum is in a straight line and depends on the objects mass and velocity.
Angular (rotational) momentum depends on the objects mass, velocity, and radius.