Answer:
There are approximately 5.55 moles
Explanation:
Answer:
a) 40,75 atm
b) 30,11 atm
Explanation:
The Ideal Gas Equation is an equation that describes the behavior of the ideal gases:
PV = nRT
where:
- P = pressure [atm]
- V = volume [L]
- n = number of mole of gas [n]
- R= gas constant = 0,08205 [atm.L/mol.°K]
- T=absolute temperature [°K]
<em>Note: We can express this values with other units, but we must ensure that the units used are the same as those used in the gas constant.</em>
The truncated virial equation of state, is an equation used to model the behavior of real gases. In this, unlike the ideal gas equation, other parameters of the gases are considered as the <u>intermolecular forces</u> and the <u>space occupied</u> by the gas
where:
- v is the molar volume [L/mol]
- B is the second virial coefficient [L/mol]
- P the pressure [atm]
- R the gas constant = 0,08205 [atm.L/mol.°K]
a) Ideal gas equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
We clear pressure of the idea gas equation and replace the data:
PV = nRT ..... P = nRT/V = 5 * 0,08205 * 298/3 =40,75 atm
b) Truncated virial equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
B = -156,7*10^-6 m3/mol = -156,7*10^-3 L/mol
We clear pressure of the idea gas equation and replace the data:
and v = 3 L/5 moles = 0,6 L/mol
Answer:
The answer is explained below
Explanation:
If you add dilute HCl (Hydrochloric Acid) to the solution, and you see fizzing, then it is the carbonate. I would recommend doing this under a fume hood, as HCl has a wicked smell, and can make a few people sick to their stomach (however, you probably won't be using 12M concentrated HCl)
Answer:
remaining still during the night.
Explanation: