The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- - Mass of the sample, in grams.
- - Specific heat of water, in calories per gram-degree Celsius.
- - Temperature change, in degrees Celsius.
If we know that , and , then the heat released by the fuel is:
The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
Answer:
Mass, m = 1.51 grams
Explanation:
It is given that,
The circumference of Aluminium cylinder, C = 13 mm = 1.3 cm
Length of the cylinder, h = 4.2 cm
We know that the density of the Aluminium is 2.7 g/cm³
Circumference, C = 2πr
Density is equal to mass per unit volume.
m is mass of the cylinder
V is the volume of the cylinder
So,
So, the mass of the cylinder is 1.51 grams.
According to Dalton's Atomic Theory, the <em>Law of Definite Proportion is applied when a compound is always made up by a fixed fraction of its individual elements.</em> This is manifested by the balancing of the reaction.
The reaction for this problem is:
H₂ + Cl₂ → 2 HCl
1 mol of H₂ is needed for every 1 mole of Cl₂. Assuming these are ideal gases, the moles is equal to the volume. So, if equal volumes of the reactants are available, they will produce twice the given volumes of HCl.
Answer:
True
Explanation:
In pi bonds, the electron density concentrates itself between the atoms of the compound but are present on either side of the line joining the atoms. Electron density is found above and below the plane of the line joining the internuclear axis of the two atoms involved in the bond.
Pi bonds usually occur by sideways overlap of atomic orbitals and this leads to both double and triple bonds.