Answer:
n=10
Step-by-step explanation:
-2=-n+8
-n=-10
n=10
The graph that shows the solutions for the inequality, y > -1/3x + 1 is: C. Graph A.
<h3>How to Find the Graph of a Linear Inequality?</h3>
The inequality sign, ">" means that the graph of the inequality has a dashed line where the shaded part is above the boundary line and the boundary line is dashed or dotted. If "≥" is used, the boundary line would not be dashed or dotted and the shaded area would be above it.
On the other hand, "<" is used when the shaded area is below the boundary line and the boundary line is a dashed line. If "≤" was used, the boundary line won't be dashed or dotted, while the shaded area would be below the boundary line that is not dotted.
Given y > -1/3x + 1, the slope (m) = change in y / change in x is -1/3.
Graph A has a slope of -1/3 and the shaded part is above the boundary line.
Therefore, the graph that shows the solutions for y > -1/3x + 1 is: C. Graph A.
Learn more about inequality graph on:
brainly.com/question/24372553
#SPJ1
it's plural so axes*
and in pilar coordinates, the axes are circular so they never intersect but the centre point is still called origin.
Answer:
426,120 litros se producen en un día Se producen
12,783,600 litros por mes (para un cálculo de 30 días en un mes)
Step-by-step explanation:
Aquí, debemos calcular la cantidad en litros de petróleo producido en un pozo petrolero.
Se nos dice que se producen 2.680 barriles por día y cada barril contiene 159 litros de petróleo.
La producción diaria en litros es, por lo tanto, de 159 * 2680 = 426,120 litros.
Ahora, para la producción mensual, supongamos que hay 30 días en un mes, la cantidad en litros producidos por mes sería la cantidad diaria multiplicada por la cantidad de días en un mes.
Matemáticamente, eso sería 30 * 426,120 = 12,783,600 litros
Answer:
The required answer is
Therefore the number in green box should be 7.
Step-by-step explanation:
Given:
AB = 7√2
AD = a , BD = b , DC = c , AC = d
∠B = 45°, ∠C = 30°
To Find:
c = ?
Solution:
In Right Angle Triangle ABD Sine identity we have
Substituting the values we get
Now in Triangle ADC Tangent identity we have
Substituting the values we get
The required answer is