They have to adapt to the water, the animals in the ocean, the way they hear and see.
Answer:
muscle cells in the legs of a marathon runner
Explanation:
Mitochondria are the powerhouse of cells and serve as a site for the aerobic stage of cellular respiration. Cellular respiration is complete oxidation of nutrients in the presence of oxygen to produce a large number of ATP molecules. Therefore, the cells that require more ATP molecules as an energy source would most likely have a greater number of mitochondria.
Muscle cells are responsible for body movement. Muscle cells in the legs of a runner would require a constant supply of ATP during running since muscle contraction requires ATP. To sustain the continuous muscle contraction during the marathon, the muscle cells in the legs of the runner would have most number of mitochondria.
Complex biochemicals found in diverse species probably did not evolve independently which is how they indicate common industry
The right answer is metaphase II.
The process is performed in two nuclear and cytoplasmic divisions, called first and second meiotic division or simply meiosis I and meiosis II. Both include prophase, metaphase, anaphase, and telophase. First division prophase is long and consists of 5 stages: leptotene, zygotene, pachytene, diplotene, and diakinesis. It is at this point that genetic recombination takes place at the level of chiasmus.
During meiosis I, the members of each homologous pair of chromosomes are paired during prophase, forming bivalents. During this phase, a protein structure, called synaptonemal complex form, allows recombination between homologous chromosomes. Subsequently, a large condensation of the bivalent chromosomes occurs and go to the metaphase plate during the first metaphase, resulting in the migration of n chromosomes to each of the poles during the first anaphase. This reduction division is responsible for maintaining the number of chromosomes characteristic of each species.
In meiosis II, as in mitosis, the sister chromatids comprising each chromosome are separated and distributed between the nuclei of the daughter cells. Between these two successive steps, there is no DNA replication. The maturation of the daughter cells will result in the gametes.