Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
Answer:
450 kJ
Explanation:
Q = mCΔT
where Q is heat (energy),
m is mass,
C is specific heat capacity,
and ΔT is the temperature change.
Q = (1.2 kg) (4180 J/kg/°C) (100°C − 10°C)
Q = 451,440 J
Q ≈ 450 kJ
Answer:
1.995 m
Explanation:
Distance of penny as seen by the person = 5 m
Height of person from water surface = 3.50 m
Apparent depth of penny = 5 - 3.50 = 1.5 m
refractive index of water, n = 1.33
real depth / apparent depth = n
real depth = 1.33 x 1.5 = 1.995 m
Thus, the actual depth of water at that point is 1.995 m.
Answer:
what do you mean ???????????