Force on the particle is defined as the application of the force field of one particle on another particle. the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
<h3>What is electric force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The electric force in the second case will be the same as in the first case. Therefore the force on the particle will be the same.
Hence the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
To learn more about the electric force refer to the link;
brainly.com/question/1076352
Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
Answer:
After 1 sec = 4.9 m
After 2 sec = 19.6 m
After 3 sec = 44.1 m
After 4 sec = 78.4 m
After 5 sec = 122.5 m
Explanation:
After 1 sec:
<em>u=0m/s t=1 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(1) + (1/2)(9.8)(1²) = 4.9m
After 2 sec:
<em>u=0m/s t=2 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(2) + (1/2)(9.8)(2²) = 19.6m
After 3 sec:
<em>u=0m/s t=3 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(3) + (1/2)(9.8)(3²) = 44.1m
After 4 sec:
<em>u=0m/s t=4 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(4) + (1/2)(9.8)(4²) = 78.4m
After 5 sec:
<em>u=0m/s t=5 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(5) + (1/2)(9.8)(5²) = 122.5m
Answer:
I beleive its B
Explanation:
If not then A but I'm positive its B
3. Kinetic energy
4. Potential energy
5. Kinetic energy because it’s moving towards the waterfall otherwise there wouldn’t be a waterfall.
6. Kinetic energy
7. Kinetic energy
8. Potential energy
9. Potential energy
10. Kinetic energy