Answer:
V₂ = 0.656 L
Explanation:
Given data:
Initial volume = 3.5 L
Initial pressure = 2.5 KPa
Final volume = ?
Final pressure = 100 mmHg (100/7.501=13.33 KPa)
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
2.5 KPa × 3.5 L = 13.33 KPa × V₂
V₂ = 8.75 KPa. L/13.33 KPa
V₂ = 0.656 L
Answer:
Collid
Explanation:
Toothpaste is a colloid, because it's part solid and part liquid. ... A colloid is a heterogeneous mixture of two substances of different phases. Shaving cream and other foams are gas dispersed in liquid. Jello, toothpaste, and other gels are liquid dispersed in solid.
One thing to notice in the question is, we are asked about molecular oxygen that has formula O2 not atomic oxygen O.
As we are asked about molecular oxygen, we will answer the question in terms of number of molecules that are present in 16 grams of molecular oxygen.
To get the number of molecules present in 16 grams of O2, we will use the formula:
No. of molecules = no. of moles x Avogadro's number (NA)----- eq 1)
As we know:
The number of moles = mass/ molar mass of molecule
Here we have been given mass already, 16 grams and the molar mass of O2 is 32 grams.
Putting the values in above formula:
= 16/32
= 0.5 moles
Putting the number of moles and Avogadro's number (6.02 * 10^23) in eq 1
No. of molecules = 0.5 x 6.02 * 10^23
=3.01 x 10^23 molecules
or 301,000,000,000,000,000,000,000 molecules
This means that 16 grams of 3.01 x 10^23 molecules of oxygen.
Hope it helps!
The color changes, heat change, smell change, are a few