Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Explanation:
It is based upon the fact that " The light travels faster then sound." As the speed of light is faster then the speed of sound, light travels 300,000 km per second and sound travels 1192 km per hour. That is why we observe the lightening first and hear the the sound of thunder later.
You can do this experiment by yourself. Once you see the lightening start counting the seconds until you hear the sound of thunder.Then divide the seconds by 5, you will find out how many miles away the lightening strike was.
The correct answer is B the total velocity is equal at both landing and launch because before your about launch you have 0 velocity then when you have landed you also have 0 velocity. Hope This Helps
The relationship between the masses of the Earth, moon and sun and their distances to each other play critical roles in affecting tides
It is 20 voltage per hour