Through stored energy is how light travels
The answer is C : 15.7 m/s
Use the idea of : momentum before collision = momentum after collision
Before collision;
For car:mass=1.1×10^3, velocity=22
For truck:mass=2.3×10^3, velocity=0
After collision;
For car:mass=2.3×10^3, velocity=-11
For truck:mass=2.3×10^3, velocity=V
(1.1×10^3 × 22) + (2.3×10^3 × 0) = (1.1×10^3 × -11) + (2.3×10^3 × V)
24200 = -12100 + 2.3×10^3V
2.3×10^3V = 36300
V = 15.7 m/s
Robert A. Millikan and Harvey Fletcher performed the oil drop experiment.
Answer:
See explanation
Explanation:
The compound ClO2 has 19 valence electrons. ClO2 is a bent molecule with tetrahedral electron pair geometry but has two lone pairs of electrons. This is indicated by the presence of four electron pairs on the outermost shell of the central atom.
The molecule has an odd number of valence electrons, hence, it is generally regarded as a paramagnetic radical. None of the proposed Lewis structures for the molecule is satisfactory because none of them obeys the octet rule.
From the images attached, one can easily see that the electron dots around the oxygen and chlorine atoms does not satisfy the octet rule in all the resonance structures shown.
Taking into account the definition of avogadro's number, 3.37×10⁻⁷ moles of methane are 20.32×10¹⁶ molecules.
First of all, you have to know that Avogadro's number indicates the number of particles of a substance (usually atoms or molecules) that are in a mole.
Its value is 6.023×10²³ particles per mole and it applies to any substance.
Then you can apply the following rule of three: if 6.023×10²³ molecules are contained in 1 mole of methane, then 20.32×10¹⁶ molecules are contained in how many moles of methane?
amount of moles of methane= (20.32×10¹⁶ molecules × 1 mole)÷ 6.023×10²³ atoms
Solving:
<u><em>amount of moles of methane= 3.37×10⁻⁷ moles</em></u>
Finally, 3.37×10⁻⁷ moles of methane are 20.32×10¹⁶ molecules.
Learn more about Avogadro's Number: