Answer:
An electric fan is considered to be a mixture of several simple machines. It includes the Wheel and Axle type, wedges, and the Inclined plane types. The blades of an electric fan are the inclined planes and the wedges.
Answer:
The average force ≅ 519.44 N.
Explanation:
Impulse = change in momentum of a body
i.e Ft = m(v - u)
where F is the force, t is the time, m is the mass of the body, v is the final velocity and u is the initial velocity.
m = 55.0 g (0.055 Kg), t = 0.00360 s, v = 34.0 m/s, since the ball was initially at rest; u = 0 m/s
So that,
F x 0.00360 = 0.055(34 - 0)
F x 0.00360 = 0.055 x 34
= 1.87
F =
= 519.4444
The average force exerted on the ball by the club is approximately 519.44 N.
Answer:
Calculating Center
Shapley correctly determined the galactic center of the Milky Way to be located in the constellation of Sagittarius. He did this by mapping out a three-dimensional distribution of the globular clusters.
Explanation:
Mark me the Brainliest..PLS
Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]
In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]
Now we can use the first statement to get the first equation:
where:
W₁₋₂ = work from the state 1 to 2.
where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]