The equation of the energy of a photon is E=h*f.
If we increase the Planck's constant h, the energy would increase.
For example, lets double the value of Planck's constant and name it H:
H=2*h. Now lets put that into the equation for energy that we will call E₂:
E₂=H*f=2*h*f=2*E.
So we can clearly see that E₂=2*E or that if we double Planck's constant, the energy also doubles.
Answer:
c. Only the linear acceleration is zero.
Explanation:
The linear acceleration is defined as the rate of change of linear velocity. Since the bicycle is moving in the same direction, with the same speed, without speeding up or slowing down. Therefore, there will be no change in linear velocity and as a result, linear acceleration will be zero.
The angular acceleration is the rate of change of angular velocity. Since the angular velocity is changing its direction constantly. Therefore, it has a certain component of acceleration at all times called centripetal acceleration.
Therefore, the correct option is:
<u>c. Only the linear acceleration is zero.</u>
Answer:
you have probably missed some details in the question.
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.
Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost =
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude=
Solving for v, we get
The person will be going at a speed of 7.67 m/s².