<h2>~<u>Solution</u> :-</h2>
- Here, to find the atomic mass of element, we must;
We know that,
- 4.6 x $ \sf{10^{22}}$ atoms of an element weigh 13.8g.
Thus,
The atoms of $ \sf{ 6.02 \times 10^{13}}$ will weigh;
- Hence, the molar mass (atomic mass) will be <u>180.6 g.</u>
Answer:
Blue: Because violet really has the most and blue is based on violet!
Explanation:
Hope this helps! Plz mark as brainliest!
Answer:
C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.
Explanation:
For gas to behave as an ideal gas there are 2 basic assumptions:
- The intermolecular forces (IMF) are neglectable.
- The volume of the gas is neglectable in comparison with the volume of the container.
<em>In which instance is a gas most likely to behave as an ideal gas?</em>
<em>A.) At low temperatures, because the molecules are always far apart.</em> FALSE. At low temperatures, molecules are closer and IMF are more appreciable.
<em>B.) When the molecules are highly polar, because IMF are more likely.</em> FALSE. When IMF are stronger the gas does not behave as an ideal gas.
<em>C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.</em> TRUE.
<em>D.) At high pressures, because the distance between molecules is likely to be small in relation to the size of the molecules.</em> FALSE. At high pressures, the distance between molecules is small and IMF are strong.