From the graph, when x = 1, y = 57,000.
Replace x with 1 in the equations and see if any of the Y 's equal 57,000 :
y = -2610.82(1) + 47860.82 = 45,250
y = 219(1)^2 - 6,506.78(1) + 59,385 = 219 - 6506.78 + 59385 = 53,097.22
y = 54041.5(0.9)^1 = 48,637.35
y = 10,504.6 (1.1)^1 = 11,555.06
The second equation is the closest. so try another x value to see if it is close to the Y value:
Let's try x = 14:
y = 219(14)^2 - 6506.78(14) + 59,385 = 42924 - 91094.92 + 59385 = 11,214.08
This is close to Y = 12,00 shown on the graph
SO the closest equitation is y = 219x^2 - 6506.78x + 59385
This is true because the answer is -6 = -6
Answer:
25
Step-by-step explanation:
25 because when you add 12 and 5 then subract the numerator you get 25
Answer:
Step-by-step explanation:
The function for this problem is: h(t) = -16(t)^2 + vt + s h= the height t= time v= velocity s= starting height With the information given, we know that the starting height is 0, since it was from the ground, and the velocity of the ball is 35 feet per second. Inserting the these information into the equation, we get: h(t) = -16(t)^2 + 35t Now the question asks to find the maximum height. It can be done by using a grapher to graph the maximum of the parabola. It could also be done by finding the vertex, which would be the maximum, of the graph by using x= -b/(2a), where b is equal to 35 and a is equal to -16. We get x=35/32, the x-value of where the vertex lies. You can use this value as the t-value in the previous equation to find the h-value of the vertex. When you do, you get h= 19.1 feet, or answer D.
hope this helps
Answer:
B
Step-by-step explanation:
Please mark me brainliest