Answer:
- Decreasing the resistance
- Using a shorter length
- Using a smaller area wire
Explanation:
Formula for conductance in wires is;
G = 1/R
Where;
G is conductance
R is resistance
This means that increasing the resistance leads to a larger denominator and thus a smaller conductance but to decrease the denominator means larger conductance.
Thus, to increase the conductance, we have to decrease the resistance.
Resistance here has a formula of;
R = ρL/A
Where;
ρ is resistivity
L is length of wire
A is area
Thus, to decrease the resistance, we will have to use a shorter length and smaller area of wire.
Answer:
E) momentum and mechanical energy
Explanation:
In the context, an object is attached to the another mass with a spring which is initially at a rest position. Now when the spring is compressed, the two masses moves with the same speed. Now since the both the masses combines with the spring to move together they are considered as one system and in this case the momentum and the kinetic energy will be conserved.
The kinetic energy and momentum of the system after collision and the kinetic energy and momentum of the two masses before collision will be constant.
Answer:a substance with low ability or no ability to conduct energy
Explanation:
Answer:
Fundamental quantities are the base quantities of a unit system, and they are defined independent of the other...
• Derived quantities are based on fundamental quantities, and they can be given in terms of fundamental quantities.
• In SI units, derived units are often given names of people such as Newton and Joule.
Explanation: