Answer:
Explanation:
pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10^−pH,
so PH =2.4 in you case is
[H+] = 10^-2.4 =0.00398
The option are not correct it looks
Reactivity is a chemical
property of a substance. According to EPA regulations, it is normally unstable
and readily
undergoes violent change without
detonating. it can explode or violently react when exposed to water, when
heated, or under STP.
Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>
Answer:
1. Tropical Climate
Explanation:
Due to the high heat in tropical climates, the moisture speeds up chemical weathering
Answer:
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
Explanation:
First of all, you have to translate the words into an equation.
Fe(iii)2O3 + C ==> Fe + CO2
The easiest way to tackle this is to start with the Oxygens and balance them. They must balance by going to the greatest common factor which is 6. So you multiply the molecule by whatever it takes to get the Oxygens to 6
2 Fe(iii)2O3 + C ==> Fe + 3 CO2
Now work on the irons. There 2 on the left and just 1 on the right. So you need to multiply the iron by 2.
2 Fe(iii)2O3 + C ==> 2 Fe + 3 CO2
Finally it is the turn of the carbons. There are 3 on the right, so you must make the carbon on the left = 3
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
And you are done.