Answer:
Molarity = 2.3 M
Explanation:
Molarity can be calculated using the following rule:
Molarity = number of moles of solute / volume of solution
1- getting the number of moles:
We are given that:
mass of solute = 105.96 grams
From the periodic table:
atomic mass of carbon = 12 grams
atomic mass of hydrogen = 1 gram
atomic mass of oxygen = 16 grams
Therefore:
molar mass of C2H6O = 2(12) + 6(1) + 16 = 46 grams
Now, we can get the number of moles as follows:
number of moles = mass / molar mass = 105.96 / 46 = 2.3 moles
2- The volume of solution is given = 1 liter
3- getting the molarity:
molarity = number of moles of solute / volume of solution
molarity = 2.3 / 1
molarity = 2.3 M
Hope this helps :)
Answer:
Explanation:
Hello!
In this case, since the energy involved during a heating process is shown below:
Whereas the specific heat of water is 4.184 J/(g°C), we can compute the heated mass of water by the addition of 11.9 kJ (11900 J) of heat as shown below:
Thus, by plugging in, we obtain:
Best regards!
Answer:-
The reaction of 2-bromopropane reacts with sodium iodide in acetone is an example of Sn2 reaction.
The I - attacks from backside to give the transition state for both.
If we compare the transition state for cyclobromopropane 2-bromopropane then we see in case of cyclobromopropane transition state, one of the H is very close to the incoming I -.
This results in steric strain and less stability of the transition state. Hence 2-bromopropane reacts with sodium iodide in acetone over 104 times faster than bromocyclopropane.