<span>Let a_0 = 100, the first payment. Every subsequent payment is the prior payment, times 1.1. In order to represent that, let a_n be the term in question. The term before it is a_n-1. So a_n = 1.1 * a_n-1. This means that a_19 = 1.1*a_18, a_18 = 1.1*a_17, etc. To find the sum of your first 20 payments, this sum is equal to a_0+a_1+a_2+...+a_19. a_1 = 1.1*a_0, so a_2 = 1.1*(1.1*a_0) = (1.1)^2 * a_0, a_3 = 1.1*a_2 = (1.1)^3*a_3, and so on. So the sum can be reduced to S = a_0 * (1+ 1.1 + 1.1^2 + 1.1^3 + ... + 1.1^19) which is approximately $5727.50</span>
Answer:
Step-by-step explanation:
We can use the Rational Root Test.
Given a polynomial in the form:
Where:
- The coefficients are integers.
- is the leading coeffcient ()
- is the constant term
Every rational root of the polynomial is in the form:
For the case of the given polynomial:
We can observe that:
- Its constant term is 6, with factors 1, 2 and 3.
- Its leading coefficient is 2, with factors 1 and 2.
Then, by Rational Roots Test we get the possible rational roots of this polynomial: