Answer:14.14 cm
Explanation:
Given
Spring Compression
Potential energy Stored in spring
Suppose k is the spring constant of spring
Potential Energy of spring is given by
for 100 J energy
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
Take into account that density and relative density are given by:
Take into account that the volume associated to each of the given sustances in the table is determined by the Level Difference (because it is the change in the volume of the water of the recipient in which the substance is immersed).
The density of water in kg/m^3 is 1000 kg/m^3.
Due to the density must be given in kg/m^3, it is necessary to express the volumes of the table in m^3 and mass in kg, then, consider the following conversion factor:
1 m^3 = 1000000 ml
1 kg = 1000 g
Then, you obtain the following results:
Brass:
Cooper:
Answer:
Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)
Explanation:
Answer:
verdadero
Explanation:
Conducción:Es la más sencilla de entender, consiste en la transferencia de calor entre dos puntos de un cuerpo que se encuentran a diferente temperatura, sin que se produzca transferencia de materia entre ellos.