Answer:
Given that JN was bisected, JL ≅ LN
Given that KM was bisected, KL ≅ ML
∠JLK ≅ ∠MLN because of vertical angles.
∠JLK is contained by JL and KL.
∠MLN is contained by ML and LN.
Therefore ΔJKL ≅ ΔNML by the SAS postulate.
Step-by-step explanation:
The SAS postulate states that when you know two triangles have an equal angle, and that angle is formed by two sides that are equal in both triangles, the two triangles are congruent.
When a line is bisected, it means it was cut in two equal parts.
Since two lines were bisected and each form a side in the triangles, two sides are congruent.
The contained angles, ∠JLK and ∠MLN, are equal because of vertical angles. Vertical angles occur when two straight lines intersect. Angles that are opposite to each other are equal in all cases.